Search results for "Affine plane"
showing 6 items of 6 documents
On 2-(n^2,2n,2n-1) designs with three intersection numbers
2007
The simple incidence structure $${\mathcal{D}(\mathcal{A},2)}$$ , formed by the points and the unordered pairs of distinct parallel lines of a finite affine plane $${\mathcal{A}=(\mathcal{P}, \mathcal{L})}$$ of order n > 4, is a 2 --- (n 2,2n,2n---1) design with intersection numbers 0,4,n. In this paper, we show that the converse is true, when n ? 5 is an odd integer.
On the algebraic representation of projectively embeddable affine geometries
1995
The main result of this article is an application of [1] and [2] which yields that an at least 2-dimensional affine geometry is module-induced if and only if it is projectively embeddable into an Arguesian projective lattice geometry.
The coordinatization of affine planes by rings
1996
With every unitary free module of rank 2 there is naturally associated a generalized affine plane (e.g. the lines are just the cosets of all nonzero 1-generated submodules). Here we solve the converse problem by coordinatizing a given generalized affine plane which satisfies certain versions of Desargues' postulate.
An axiomatic treatment of ratios in an affine plane
1967
Invariants of unipotent groups
1987
I’ll give a survey on the known results on finite generation of invariants for nonreductive groups, and some conjectures. You know that Hilbert’s 14th problem is solved for the invariants of reductive groups; see [12] for a survey. So the general case reduces to the case of unipotent groups. But in this case there are only a few results, some negative and some positive. I assume that k is an infinite field, say the complex numbers, but in most instances an arbitrary ring would do it.
Affine Kettengeometrien �ber Jordanalgebren
1996
It is shown that an affine chain geometry over a Jordan algebra can be constructed in a nearly classical manner. Conversely, such chain geometries are characterized as systems of rational normal curves having a group of automorphisms with certain properties.